Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35407761

RESUMO

Crystals with layered structures are crucial for the construction of functional materials exhibiting intercalation, ionic conductivity, or emission properties. Polyoxometalate crystals hybridized with surfactant cations have distinct layered packings due to the surfactants which can form lamellar structures. Introducing metal cations into such polyoxometalate-surfactant hybrid crystals is significant for the addition of specific functions. Here, polyoxomolybdate-surfactant hybrid crystals were synthesized as single crystals, and unambiguously characterized by X-ray structure analyses. Octamolybdate ([Mo8O26]4-, Mo8) and heterocyclic surfactant of 1-dodecylpyridinium (C12py) were employed. The hybrid crystals were composed of α-type and ß-type Mo8 isomers. Two crystalline phases containing α-type Mo8 were obtained as pseudopolymorphs depending on the crystallization conditions. Crystallization with the presence of rubidium and cesium cations caused the formation of metal cation-introduced hybrid crystals comprising ß-Mo8 (C12py-Rb-Mo8 and C12py-Cs-Mo8). The yield of the C12py-Rb-Mo8 hybrid crystal was almost constant within crystallization temperatures of 279-303 K, while that of C12py-Cs-Mo8 decreased over 288 K. This means that the C12py-Mo8 hybrid crystal can capture Rb+ and Cs+ from the solution phase into the solids as the C12py-Rb-Mo8 and C12py-Cs-Mo8 hybrid crystals. The C12py-Mo8 hybrid crystals could be applied to ion-capturing materials for heavy metal cation removal.

2.
Polymers (Basel) ; 9(7)2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30970969

RESUMO

Solid electrolytes are crucial materials for lithium-ion or fuel-cell battery technology due to their structural stability and easiness for handling. Emergence of high conductivity in solid electrolytes requires precise control of the composition and structure. A promising strategy toward highly-conductive solid electrolytes is employing a thermally-stable inorganic component and a structurally-flexible organic moiety to construct inorganic-organic hybrid materials. Ionic liquids as the organic component will be advantageous for the emergence of high conductivity, and polyoxometalate, such as heteropolyacids, are well-known as inorganic proton conductors. Here, newly-designed ionic liquid imidazolium cations, having a polymerizable methacryl group (denoted as MAImC1), were successfully hybridized with heteropolyanions of [PW12O40]3- (PW12) to form inorganic-organic hybrid monomers of MAImC1-PW12. The synthetic procedure of MAImC1-PW12 was a simple ion-exchange reaction, being generally applicable to several polyoxometalates, in principle. MAImC1-PW12 was obtained as single crystals, and its molecular and crystal structures were clearly revealed. Additionally, the hybrid monomer of MAImC1-PW12 was polymerized by a radical polymerization using AIBN as an initiator. Some of the resulting inorganic-organic hybrid polymers exhibited conductivity of 10-4 S·cm-1 order under humidified conditions at 313 K.

3.
Int J Mol Sci ; 16(4): 8505-16, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25894221

RESUMO

Inorganic-organic hybrid crystals were successfully obtained as single crystals by using polyoxotungstate anion and cationic dodecylpyridazinium (C12pda) and dodecylpyridinium (C12py) surfactants. The decatungstate (W10) anion was used as the inorganic component, and the crystal structures were compared. In the crystal comprising C12pda (C12pda-W10), the heterocyclic moiety directly interacted with W10, which contributed to a build-up of the crystal structure. On the other hand, the crystal consisting of C12py (C12py-W10) had similar crystal packing and molecular arrangement to those in the W10 crystal hybridized with other pyridinium surfactants. These results indicate the significance of the heterocyclic moiety of the surfactant to construct hybrid crystals with polyoxometalate anions.


Assuntos
Piridazinas/química , Compostos de Piridínio/química , Tensoativos/química , Compostos de Tungstênio/química , Cristalização , Cristalografia por Raios X , Ligação de Hidrogênio , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...